Nanoporous Transparent MOF Glasses with Accessible Internal Surface.
نویسندگان
چکیده
While glassy materials can be made from virtually every class of liquid (metallic, molecular, covalent, and ionic), to date, formation of glasses in which structural units impart porosity on the nanoscopic level remains undeveloped. In view of the well-established porosity of metal-organic frameworks (MOFs) and the flexibility of their design, we have sought to combine their formation principles with the general versatility of glassy materials. Although the preparation of glassy MOFs can be achieved by amorphization of crystalline frameworks, transparent glassy MOFs exhibiting permanent porosity accessible to gases are yet to be reported. Here, we present a generalizable chemical strategy for making such MOF glasses by assembly from viscous solutions of metal node and organic strut and subsequent evaporation of a plasticizer-modulator solvent. This process yields glasses with 300 m(2)/g internal surface area (obtained from N2 adsorption isotherms) and a 2 nm pore-pore separation. On a volumetric basis, this porosity (0.33 cm(3)/cm(3)) is 3 times that of the early MOFs (0.11 cm(3)/cm(3) for MOF-2) and within range of the most porous MOFs known (0.60 cm(3)/cm(3) for MOF-5). We believe the porosity originates from a 3D covalent network as evidenced by the disappearance of the glass transition signature as the solvent is removed and the highly cross-linked nanostructure builds up. Our work represents an important step forward in translating the versatility and porosity of MOFs to glassy materials.
منابع مشابه
Nanoporous Composites as Bifunctional Catalysts
Title of Document: SYNTHESIS OF ZEOLITE@MOF NANOPOROUS COMPOSITES AS BIFUNCTIONAL CATALYSTS Guanghui Zhu, Master of Science, 2014 Directed By: Professor, Dr. Dongxia Liu, Department of Chemical and Biomolecular Engineering And Professor, Dr. Kyu Yong Choi, Department of Chemical and Biomolecular Engineering As nanoporous materials, zeolite and metal organic framework (MOF) share common characte...
متن کاملLiquid- and Gas-Phase Diffusion of Ferrocene in Thin Films of Metal-Organic Frameworks
The mass transfer of the guest molecules in nanoporous host materials, in particular in metal-organic frameworks (MOFs), is among the crucial features of their applications. By using thin surface-mounted MOF films in combination with a quartz crystal microbalance (QCM), the diffusion of ferrocene vapor and of ethanolic and hexanic ferrocene solution in HKUST-1 was investigated. For the first ti...
متن کاملSynthesis and Characterization of Zn3 (BTC)2 Nanoporous Sorbent and its Application for Hydrogen Storage at Ambient Temperature
Metal organic frameworks (MOFs) are considered an interesting option for hydrogen storage. These materials show an exceptional H2 uptake. Here, Zn3(BTC)2 as MOF was synthesized with a solvothermal method. The phase stability and microstructure of the Zn3(BTC)2 was characterized in terms of their properties and structures, using a number of analytical techniques including FT-IR, XRD, SEM, BET ...
متن کاملDetermination of the Nucleation and Crystallization Parameters for Making Nanoporous Titanium Phosphate Glass-ceramics
Nanoporous glass-ceramics were prepared with composition 45CaO-25TiO2-35P2O5 (mol%). Two molar percent of Na2O was added as a flux to the composition. With the aforementioned composition, glass melted and crystallized into glass-ceramics containing β-Ca3(PO4)2 and CaTi4(PO4)6 as the main phases. The differential thermal analysis (DTA) was conducted to determine the suitable temperatures f...
متن کاملBimetallic Metal-Organic Frameworks for Controlled Catalytic Graphitization of Nanoporous Carbons
Single metal-organic frameworks (MOFs), constructed from the coordination between one-fold metal ions and organic linkers, show limited functionalities when used as precursors for nanoporous carbon materials. Herein, we propose to merge the advantages of zinc and cobalt metals ions into one single MOF crystal (i.e., bimetallic MOFs). The organic linkers that coordinate with cobalt ions tend to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 138 34 شماره
صفحات -
تاریخ انتشار 2016